Oxidative stress and dysregulation of the taurine transporter in high-glucose-exposed human Schwann cells: implications for pathogenesis of diabetic neuropathy.

نویسندگان

  • Trevor Askwith
  • Wei Zeng
  • Margaret C Eggo
  • Martin J Stevens
چکیده

In human Schwann cells, the role of taurine in regulating glucose-induced changes in antioxidant defense systems has been examined. Treatment with high glucose for 7 days induced reactive oxygen species, increased 4-hydroxynoneal adducts (20 +/- 5%, P < 0.05) and poly(ADP-ribosyl)ated proteins (40 +/- 13%, P < 0.05). Increases in these markers of oxidative stress were reversed by simultaneous incubation in 0.25 mM taurine. Both high glucose and taurine independently increased superoxide dismutase and catalase activity and decreased glutathione levels, but their effects were not additive. Glucose reduced taurine transporter (TauT) mRNA and protein in a dose-dependent manner with maximal decreases of 66 +/- 6 and 63 +/- 12%, respectively (P < 0.05 both). The V(max) for taurine uptake was decreased in 30 mM glucose from 61 +/- 5 to 42 +/- 3 pmol x min(-1) x mg protein(-1) (P < 0.001). Glucose-induced TauT downregulation could be reversed by inhibition of aldose reductase, a pathway that depletes NADPH and increases osmotic stress and protein glycation. TauT protein was increased more than threefold, and the V(max) for taurine uptake doubled (P < 0.05 both) by prooxidants. TauT downregulation was reversed both by treatment with the antioxidant alpha-lipoic acid, which increased TauT mRNA by 60% and V(max) by 50% (P < 0.05 both), and by the aldose reductase inhibitor sorbinil, which increased TauT mRNA 380% and V(max) by 98% (P < 0.01 both). These data highlight the potential therapeutic benefits of taurine supplementation in diabetic complications and provide mechanisms whereby taurine restoration could be achieved in order to prevent or reverse diabetic complications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of local renin-angiotensin system on high glucose-induced cell toxicity, apoptosis and reactive oxygen species production in PC12 cells

Objective(s): Hyperglycemia, oxidative stress and apoptosis have key roles in pathogenesis of diabetic neuropathy. There are local renin-angiotensin systems (RASs) in different tissues such as neural tissue. Local RASs are involved in physiological and pathophysiological processes such as inflammation, proliferation and apoptosis. This study aimed to investigate the role of local renin-angioten...

متن کامل

Nitrosative-induced posttranslational α-tubulin changes on high-glucose-exposed Schwannoma cell line.

OBJECTIVE One of the major complications during prolonged hyperglycemic condition is the onset of the so-called diabetic neuropathy, that can affect the peripheral nervous system. Evidence has reported that glucose-induced oxidative stress could be a key mediator in this process, impairing the cytoskeletal structures, such as microtubules. In general, much attention is paid to the possible nitr...

متن کامل

Oxidative-nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in experimental diabetic neuropathy: the relation is revisited.

Poly(ADP-ribose) polymerase (PARP) activation, an important factor in the pathogenesis of diabetes complications, is considered a downstream effector of oxidative-nitrosative stress. However, some recent findings suggest that it is not necessarily the case and that PARP activation may precede and contribute to free radical and oxidant-induced injury. This study evaluated the effect of PARP inhi...

متن کامل

Immortalized Adult Rodent Schwann Cells as In Vitro Models to Study Diabetic Neuropathy

We have established spontaneously immortalized Schwann cell lines from normal adult mice and rats and murine disease models. One of the normal mouse cell lines, IMS32, possesses some biological properties of mature Schwann cells and high proliferative activities. The IMS32 cells under hyperglycemic and/or hyperlipidemic conditions have been utilized to investigate the pathogenesis of diabetic n...

متن کامل

Sensory neurons and schwann cells respond to oxidative stress by increasing antioxidant defense mechanisms.

Elevated blood glucose is a key initiator of mechanisms leading to diabetic neuropathy. Increases in glucose induce acute mitochondrial oxidative stress in dorsal root ganglion (DRG) neurons, the sensory neurons normally affected in diabetic neuropathy, whereas Schwann cells are largely unaffected. We propose that activation of an antioxidant response in DRG neurons would prevent glucose-induce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 297 3  شماره 

صفحات  -

تاریخ انتشار 2009